Regulation of neural progenitor cell proliferation and fate by proteolytic pathways and inflammatory signals in the brain

نویسنده

  • Raili Koivuniemi
چکیده

Neural progenitor cells (NPCs) are present in the developing and adult neuroepithelium of the brain and are regulated by internal and external signals that influence neurogenesis and tissue homeostasis. NPCs are multipotent tissue stem cells that can arouse all neural cell types, including neurons and glial cells. In culture, NPCs grow preferentially as cell aggregates called neurospheres. This suggests that interactions between cells are essential to regulate NPC behavior and development. Interactions between cells may be facilitated by cell surface-attached proteases and their inhibitors that play an important role in development and during tissue remodeling after injury. Thus, they could regulate also brain development. Neuroinflammation, an innate immune response of the nervous system, is part of many neurodegenerative diseases. Neuroinflammation involves activation of microglia and production of proinflammatory cytokines. During neuroinflammation, NPCs interact with the immune system and may decrease inflammatory effects in the brain. However, inflammation may have negative effects on NPCs and thus, agents that protect NPCs could serve as a therapeutic potential for neuronal injuries and neurodegenerative diseases by enabling local tissue repair in the brain. The aim of this thesis was to study the regulation of NPC development by membrane-associated proteins and the effects of inflammation on NPCs. Glucocorticoid hormone (GH) levels increase in inflammation and after stress. GHs have previously been shown to decrease NPC proliferation and neurogenesis. We have studied the effects of a synthetic GH dexamethasone on the cytosolic membrane-associated and anti-apoptotic protein BRUCE, and how BRUCE affects NPC behaviour. In addition, we have studied the secretion of cytokine interferon-gamma (IFN) after microglial activation and further the influence of IFN on NPCs. To address the role of cell surface-associated protease inhibitors during NPC development, we have studied the expression and function of Kunitz type serine protease inhibitors hepatocyte growth factor activator inhibitors -1 (HAI-1) and -2 (HAI-2) in NPCs. The results show that dexamethasone enhances degradation of BRUCE by the ubiquitin-proteasome system (UPS), which leads to decreased NPC proliferation. NPC division was negatively affected also by IFN produced by microglial cells as well as protease inhibitors HAI-1 and HAI-2. Moreover, IFN induced NPC cell death that was rescued by a neuropeptide pituitary adenylate cyclase-activating peptide (PACAP). In the developing NPCs, HAI-1 and HAI-2 expression was increased by bone morphogenetic protein-2 (BMP-2) and BMP-4, which inhibited NPC proliferation and increased glial cell differentiation partly in a HAI-dependent manner. This thesis provides knowledge about interplay between immune cells and NPCs as well as developmental signaling systems, including proteolytic pathways, that affect NPC behaviour. In NPCs, proteolytic pathways may be regulated by external signals, like cytokines, from the neighboring cells. Proteolysis is involved also in the UPS that regulates the cell cycle machinery and thus, cell division. This thesis also deals with NPC survival, which is of importance for stem cell therapies. Knowledge of reciprocal effects of IFN and PACAP on NPCs is relevant when designing treatment for brain inflammation and disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alpha-Tocopherol increases the proliferation of induced pluripotent stem cell derived neural progenitor cells

In addition to its antioxidant effect, Vitamin E or α–tocopherol is suggested to enhance remyelination in the animal model of non-inflammatory demyelination. In this study, the possible proliferative effect of vitamin E on human- induced pluripotent stem cell-derived neural progenitors (hiPS-NPs) and the underlying mechanisms were investigated in vitro. NPs were induced from iPS cells via 3 ste...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

I-7: Maternal Signalling to the Placenta

Background: Though it is well established that maternal blood-borne signals influence highly the growth of the placenta, the mechanisms are not known. In vitro trophoblast culture models are limited by an inability to reconstruct the polarised bilayer of the human hemochorial placenta. We have used a first trimester villous tissue explant system to investigate how growth factors interact with p...

متن کامل

Mesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells

Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013